martes, 10 de noviembre de 2009

Secciones Cónicas


Se denomina sección cónica a la curva intersección de un cono con un plano que no pasa por su vértice. Se clasifican en tres tipos: elipses, parábolas e hipérbolas.


ELIPSE

La elipse es el lugar geometrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es una constante positiva.
Una elipse es la curva cerrada que resulta al cortar la superficie de un cono por un plano oblicuo al eje de simetría –con ángulo mayor que el de la generatriz respecto del eje de revolución. Una elipse que gira alrededor de su eje menor genera un esferoide achatado, mientras que una elipse que gira alrededor de su eje principal genera un esferoide alargado.


Elementos de la Elipse

La elipse posee un «eje mayor», trazo AB (que equivale a ), y un «eje menor», trazo CD; la mitad de cada uno de esos ejes recibe el nombre de «semieje», de tal manera que se los denomina «semieje mayor» y «semieje menor», respectivamente.
Sobre el «eje mayor» existen dos puntos y que se llaman «focos».
El punto puede estar ubicado en cualquier lugar del perimetro de la «elipse».


Puntos de una elipse
Si 'F1' y 'F2' son dos puntos del plano y D es una constante mayor que la distancia F1F2, un punto Q pertenecerá a la elipse, si:





Donde "a" es el semieje mayor de la elipse.




















La ecuación de una elipse en coordenadas cartesianas, con centro en el origen, es:







Donde a > 0 y b > 0 son los semiejes de la elipse (a corresponde al eje de las abscisas, b al eje de las ordenadas). El origen O es la mitad del segmento [FF']. La distancia entre los focos FF' se llama distancia focal y vale 2c = 2ea, siendo e la excentricidad y a el semieje mayor.
Si el centro de la elipse se encuentra en el punto (x1, y1), la ecuación es:







PARABOLA

Es una sección conica generada al cortar un cono recto con un plano paralelo a la directriz.
Se define también como el lugar geométrico de los puntos que equidistan de una recta (eje o directriz) y un punto fijo llamado foco.
La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo la influencia de la gravedad.


Ecuación general de una parábola
Hasta ahora hemos visto parábolas con sus ejes paralelos a alguno de los ejes de coordenadas. De esta forma las fórmulas son funciones de x ó de y. Pero una parábola puede tener su eje inclinado con respecto a un par de ejes de coordenadas ortogonales.
La expresión algebraica que describe una parábola que ocupe cualquier posición en un plano es:




Si y sólo si



Para que exista una parábola los coeficientes a y c no pueden ser simultáneamente nulos

Mediante traslaciones y rotaciones es posible hallar un sistema de referencia en el que la ecuación anterior se exprese mediante una fórmula algebraica de la forma
, donde a es distinto de cero.























HIPERBOLA


Una hipérbola es el lugar geométrico de los puntos tales que el valor absoluto de la diferencia de sus distancias a dos puntos fijos, llamados focos, es igual a una constante positiva igual a la distancia entre los vértices.


Ecuaciones de la hipérbola
Ecuaciones en coordenadas cartesianas:
Ecuación de una hiperbola con centro en el origen de coordenadas (0,0)







Ecuación de una hipérbola con centro en el punto (h,k)







Ejemplos:


a)








b)